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Abstract
For AI researchers, access to a large and well-curated dataset is crucial. Working in the field of breast radiology, our aim was to
develop a high-quality platform that can be used for evaluation of networks aiming to predict breast cancer risk, estimate
mammographic sensitivity, and detect tumors. Our dataset, Cohort of Screen-Aged Women (CSAW), is a population-based
cohort of all women 40 to 74 years of age invited to screening in the Stockholm region, Sweden, between 2008 and 2015. All
women were invited to mammography screening every 18 to 24 months free of charge. Images were collected from the PACS of
the three breast centers that completely cover the region. DICOM metadata were collected together with the images. Screening
decisions and clinical outcome data were collected by linkage to the regional cancer center registers. Incident cancer cases, from
one center, were pixel-level annotated by a radiologist. A separate subset for efficient evaluation of external networks was defined
for the uptake area of one center. The collection and use of the dataset for the purpose of AI research has been approved by the
Ethical Review Board. CSAW included 499,807 women invited to screening between 2008 and 2015 with a total of 1,182,733
completed screening examinations. Around 2 million mammography images have currently been collected, including all images
for women who developed breast cancer. There were 10,582 women diagnosed with breast cancer; for 8463, it was their first
breast cancer. Clinical data include biopsy-verified breast cancer diagnoses, histological origin, tumor size, lymph node status,
Elston grade, and receptor status. One thousand eight hundred ninety-one images of 898 women had tumors pixel level annotated
including any tumor signs in the prior negative screening mammogram. Our dataset has already been used for evaluation by
several research groups. We have defined a high-volume platform for training and evaluation of deep neural networks in the
domain of mammographic imaging.
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Background

Developing deep neural networks in the field of radiology is
the focus of many research groups [1, 2]. Having a refined
network architecture is important, while access to a large and
well-curated dataset is crucial. There are a few large datasets
available for deep learning research. NIH has released a data
set of 100,000 chest X-rays from 30,000 patients [3]. The
Stanford dataset CheXpert features 224,316 chest X-rays
and radiology reports from 65,240 patients [4]. A group from
the Geisinger Health system in the USA has curated a dataset
of 40,367 3D head CT studies and trained a deep learning
system for detecting brain hemorrhage [5]. For breast imag-
ing, there are a few publicly available mammographic
datasets, such as Mammographic Image Analysis Society
Minimammographic Database (mini-MIAS) and Digital
Database for Screening Mammography (DDSM). They have
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a relatively small number of examinations: in mini-MIAS,
there are 322 digitized films, and in DDSM there are 2500
examinations. An advantage of the DDSM dataset is the in-
clusion of pixel-level annotations. However, the number of
cases is very small in relation to what is required for deep
neural networks, and the datasets are not representative of
screening populations.

Sweden has a long tradition of breast cancer screening.
National screening programs started in 1986 [6] and large
mortality studies have shown that breast cancer mortality de-
creased approximately 30% after introducing screening [7, 8].
In Sweden, all women between 40 and 74 years are invited for
breast cancer screening every 18 to 24months. The attendance
rate is around 80% [9]. Around 3% of all screened women are
recalled for additional imaging [10] and around 0.5% get a
diagnosis of breast cancer [11]. For women attending screen-
ing, around 70% of all breast cancers are screen-detected [12]
and the remaining 30% are interval cancers. One aim of AI
systems, in breast imaging, is to improve early detection by
computer-aided detection (CAD) of tumors that would other-
wise have resulted in false negative screenings. Another aim
of AI networks could also be to predict which women would
benefit the most from more sensitive, but expensive and time-
consuming, supplemental screening modalities such as mag-
netic resonance imaging (MRI). Traditional image-based risk
prediction models have mainly utilized a single measure of
breast density [13]. By using deep learning techniques more
information than density can potentially be extracted from the
mammograms.

Working in the field of breast radiology, our aim has been
to develop a high-quality platform for training and testing of
AI networks for screening mammography. The well-
established breast cancer screening program in Sweden, with
national guidelines and government-run cancer databases,
provided an excellent opportunity to create a large dataset
[14]. Linkage between registers and follow-up over time was
facilitated by the Swedish personal identification numbers.

Method

CSAW Cohort

Our dataset Cohort of Screen-Aged Women (CSAW) is a
complete population-based cohort of women 40 to 74 years
of age invited to screening in the Stockholm region, Sweden,
between 2008 and 2015. All women were invited to mam-
mography screening free of charge every 18 to 24 months.
The regional cancer center provided personal identification
numbers for all women that fulfilled the inclusion criteria.
The identification numbers were linked to the breast cancer
quality register to extract the following information: time var-
iables (of each visit, of cancer diagnosis, and of death if any),

diagnostic variables (tumor location, treating clinic, clinical/
screening detection, detection method, invasiveness), surgical
variables (surgical method, reoperation status, axilla surgery),
and data for tumor, node, and metastasis (TNM) classification.
Tumor biology variables whereof the most important are tu-
mor receptor status (progesterone, estrogen, and herceptin),
histological origin (ductal, lobular, medullary, phyllodes),
Elston grade (grade 1 to 3), and lymph node status. All diag-
noses of breast cancer were biopsy verified. Molecular sub-
types were defined using receptor proxies: Luminal A for
cancers that were positive for both estrogen and progesterone
receptors and Her2 receptor negative; Luminal B for cancers
that were positive for either estrogen or progesterone receptor
and Her2 receptor negative; Her2 overexpressing for cancers
that were Her2 positive; and Basal for cancers that were es-
trogen, progesterone, and Her2 receptor negative. The person-
al identification numbers were also linked to the radiological
image repository to extract all digital mammograms from the
PACS of the three breast centers that completely cover the
region: Karolinska University Hospital, Sankt Goran
Hospital, and Southern General Hospital. Incident cancer
cases were pixel level annotated by a radiologist. DICOM
metadata, including equipment manufacturer, compressed
breast thickness, and exposure information, were collected
together with the images. Screening decisions and clinical
outcome data were collected by linkage to the regional cancer
center registers. All mammography screening examinations
had been assessed by two radiologists independently and the
following screening decision data were collected: flagging of
potential pathology by none, one or both radiologists, and the
final recall decision after consensus discussion. The images
and corresponding data were then anonymized and stored on a
local off-line server. A nested case-control subset for efficient
evaluation of external networks was defined as described be-
low. The collection and use of the dataset for the purpose of AI
research has been approved by the regional Ethical Review
Board (ERB). The ERB waived the requirement for informed
consent, which meant that the cohort should include all wom-
en without bias. Image retrieval was additionally approved by
each head of radiology department.

Image Annotation

Once the images and data had been stored, we selectedwomen
who had been diagnosed with breast cancer and retrieved their
images from the time of diagnosis, if available, and from prior
screening. For mammographically visible tumors, we used an
in-house tool to free-hand annotate regions of interest (ROI)
on a pixel level. We also annotated any tumor signs that we
could identify in the prior, supposedly negative, screening
mammogram. If there were no tumor signs in the prior mam-
mogram, we identified the pixel coordinates of the corre-
sponding location of where the tumor subsequently arose by
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comparing with the mammogram from time of diagnosis.
Some of the mammograms had no visible tumor sign, and
no annotation was made in those images. Images were
assessed on a high-resolution diagnostic grade display. The
in-house annotation tool was developed using the MATLAB
software (MathWorks). Image annotationwas limited towom-
en diagnosed at the Karolinska University Hospital.

CSAW Case-Control Subset

Based on women attending screening at the Karolinska
University Hospital, we have defined a separate case-control
subset containing all data for all breast cancer cases and
10,000 randomly selected healthy controls. The purpose of
the case-control subset is to make evaluation more efficient
by not having to process an unnecessary amount of healthy
controls while preserving the representability of the CSAW
screening cohort in which it is nested. All images were ac-
quired on Hologic mammography equipment. The subset in-
cludes the breast cancer cases for which the pixel-level anno-
tations were made. Subset data were transferred and stored on
local SSD hard drives on a separate evaluation workstation
equipped with Ubuntu operating system, 20 cores, 32 GB
RAM, Gigabyte GeForce GTX 1080 Ti graphics card,
256 GB SSD drive for operating system, and application use
as well as an additional 10 TB external hard drive. Installed
software includes TeamViewer, Docker, and Virtual Box.
When external parties remotely access the evaluation work-
station, the SSD image drives are temporarily detached to
protect patient integrity and data safety. The system set-up is
intended for evaluation purposes and would not be recom-
mended for efficient training of deep neural networks.

Results

In total, 499,807 women were included in the CSAW cohort
on the basis of a total of 1,688,216 invitations to screening
between 2008 and 2015. There were 2119 women with a prior
history of breast cancer or diagnosed at an age outside the
screening range. After excluding these women, there were
8463 women diagnosed with their first incident breast cancer
(Table 1). The average age was 53.2 years (SD 10.1) overall
and for healthy women and 57.8 (SD 9.3) for women diag-
nosed with breast cancer (p < 0.001). As a result of 1,688,216
invitations to screening, there was a total of 1,182,733 (70%)
completed screening examinations (Table 2). Each examina-
tion consisted of four images, two views of each breast. Most
women had 3 to 4 screening rounds during the study time
period. There were 4703 screen-detected cancers (SDC) and
1938 interval cancers (IC) (Table 3). The proportion of IC of
the sum of IC and SDC was 29%. The time from prior nega-
tive screening to the time of IC diagnosis is shown in Fig. 1.

The most common invasive cancer was ductal (67%, n =
5632) and the second most common was lobular (11%, n =
922). The median sizes for invasive-only and in situ cancers
were 15 mm and 21 mm, respectively. The total number of
images in the cohort was more than 4 million. As of today,
around 2 million images, including all breast cancer cases,
have been transferred to the locally stored dataset. Pixel-
level annotations were made in 1891 mammograms of 898
women (Table 4, Fig. 2).

For the case-control subset which is available for evalua-
tion of external networks, we included women from
Karolinska University Hospital. Additional cases and controls
from the other two breast centers in Stockholm will be added
shortly. All images for women diagnosed with their first breast
cancer (n = 1303) and all images for 10,000 randomly selected
controls were included. All images in the case-control subset
were acquired on Hologic® mammography systems. The
case-control subset is currently used in studies evaluating the
performance of AI CAD deep neural networks and for com-
paring network performance with radiologist performance.
The following parameters are examples of what can be eval-
uated: abnormal interpretation rate, recall rate, cancer detec-
tion rate, false negative rate, false positive rate, sensitivity,
specificity, and AUC. We can also estimate hazard ratio and
odds ratio for the association between deep neural network
predictions and breast cancer within a follow-up time period,
for all breast cancers and for screen-detected and interval can-
cers separately. These performance parameters can then be
further evaluated based on any of the clinical cancer data

Table 1 Description of all women in the CSAW study population

Cancer status Women %

Total 499,807 100.0%

Healthy (at least until Dec. 31, 2015) 489,225 97.5%

Diagnosed with cancer 10,582 2.1%

Prior cancer or age outside screening range 2119 0.4%

Incident cancer (2008 to 2015) 8463 1.7%

Table 2 Mammography screening examinations

Invitation to
screening

Completed
examination

n % n %

Karolinska University Hospital 278,996 17% 198,820 17%

Sankt G8ran Hospital 668,366 40% 454,341 38%

Southern General Hospital 482,883 29% 340,866 29%

Danderyd Hospital 257,717 15% 188,527 16%

Other 254 < 1% 179 < 1%

Total 1,688,216 100% 1,182,733 100%

Each screening examination contains four images, two of each breast
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collected such as tumor size, histological origin, or molecular
subtype (Supplemental Table S1), or by image acquisition
parameters (Supplemental Table S2).

Discussion

We have curated a large cohort of women, CSAW, based on
invitation to screening in a geographically defined area.
Compared with other public mammography datasets with
hundreds to thousands of images, our dataset containsmillions
of images. The CSAW dataset has been used as evaluation
data in the Digital Mammography DREAM Challenge and

in our own research [2, 15–17]. In addition, there is an on-
going evaluation work for four external research groups.

We have linked each woman to pathological mammograms
and normal mammograms. The dataset contains information
about cancer diagnosis, staging, and tumor characteristics as
well as surgical characteristics, radiological assessments, and
image acquisition metadata. In our data, we observed a higher
age for women who were diagnosed with breast cancer com-
pared with those who remained healthy, which agrees with
prior studies [18]. We found that nearly 30% of cancers were
not screen-detected but diagnosed clinically during the inter-
val between screening examinations, in line with prior num-
bers in a pooled analysis of six European countries [19]. There
is high reliability of the diagnoses since more than 99% are
biopsy verified and underreporting to the cancer registry is
around 1.1 to 1.6% [20]. Many research questions regarding
breast screening and cancer diagnoses can be addressed in the
context of deep neural networks by using the CSAW dataset.
We have listed a few potential application areas below:

(1) Developing risk prediction networks. By training a
network on healthy mammograms and mammograms
from women who later developed cancer, a risk predic-
tion score can be calculated for each woman. The score
can eventually be used as a tool to select high-risk wom-
en versus low-risk women. Upon this, more individual-
ized screening schemes can be developed.

(2) Developing tumor detection networks. By training a
network on healthy mammograms and on mammograms
containing tumor(s), the network can discriminate be-
tween healthy and pathologic mammograms. The tumor
detection network can eventually be used in many other
environments such as acting as a single reader which is
attractive in the light of a lack of breast radiologists to-
day. Tumor detection networks can also act as an assess-
ment of the radiologists’ capability of assessing mammo-
grams and the false negative recall rate.

(3) Developing sensitivity assessment networks. A net-
work can be trained on “normal” images of women that
later developed interval cancer, i.e., the negative screen-
ingmammogram before the interval cancer was detected.
Thus, the network could potentially learn to discriminate
between mammographic appearances representing high
and low sensitivity.

(4) Evaluating and validating third-party networks. The
case-control subset of CSAW is an enriched representa-
tive dataset of mammograms based on a full screening
population. In expectation of a large number of compet-
ing AI networks, there is an increasing need for robust
external evaluation of them.

(5) Interactive education and continuous training
system. Images with and without the annotated cancers
can potentially be used as interactive training cases in

Table 3 Description of incident breast cancer cases

Women with prior cancer were not included

Parameter n %

Age at breast cancer diagnosis (years)
40 to 49 1927 23%
50 to 59 2379 28%
60 to 69 3227 38%
70+ 930 11%
Missing information 0 0%

Detection mode
Screen-detected cancer 4703 56%
Interval cancer (2-year interval) 1938 23%
Overdue > 3 years 393 5%
Never-screened 566 7%
Indeterminate detection mode 863 10%

Missing information 0 0%
Tumor size
0–5 mm 278 3%
6–10 mm 1263 15%
11–19 mm 3014 36%
20+ mm 2476 29%
Missing information 1432 17%

Invasiveness
Invasive only 3130 37%
In situ only 1080 13%
Mixed invasive and in situ 4117 49%
Missing information 136 2%

Lymph node status
Negative, no metastasis 7572 89%
Positive, metastasis detected 876 10%
Missing information 15 0%

Histology
Ductal only 5632 67%
Lobular only 922 11%
Medullary 43 1%
Mixed or other 623 7%
Missing information or in situ cancer 1243 15%

Receptor status
Estrogen receptor positive 6599 78%
Estrogen receptor negative 911 11%
Missing information 953 11%
Progesterone receptor positive 5527 65%
Progesterone receptor negative 1855 22%
Missing information 1081 13%
HER2 receptor amplified 902 11%
HER2 receptor negative 5463 65%
Missing information 2098 25%
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educational software. If available, deep learning predic-
tions for tumor detection and for mammographic sensi-
tivity can be used to assess the difficulty level of each
case. The most appropriate cases can then be selected for
each trainee’s proficiency level. By leveraging the clin-
ical cancer data, training cases can be enriched with, e.g.,
lobular cancers for a trainee who performs relatively
worse for that subtype.

A strength of our dataset is that all women that were invited
to screening are included, without exclusions. Another strength
is the large number of diagnosed women, and the large number
of clinical cancer data and image acquisition parameters that are
available for subgroup analysis and adjustments. Finally, the
free-hand pixel-level annotations by an experienced breast ra-
diologist make precise locational comparisons possible. A

potential limitation of our dataset is that even though it is large,
it might still be too small for any given training task. We have
previously demonstrated that a limited sample from the dataset
was enough to develop a deep neural network that achieved a
similar, or better, performance to breast density in breast cancer
risk prediction [16]. The current case-control dataset was com-
posed of images from one vendor only, which restricts the
evaluation. Going forward, we plan to add breast cancer cases
from the other two breast centers in Stockholm, which will
include images acquired on equipment from other vendors.

Fig. 1 Time from each screening
examination to time of diagnosis
for interval cancers (n = 1938),
i.e., cancers detected during the 2-
year interval after a negative
screening examination. The bar
chart shows that immediately
after a negative screening the rate
of clinically detected interval
cancer is low, and then gradually
increases until around 400 days
afterwards

Table 4 Pixel-level annotations of tumors at diagnosis and prior
screening

Annotation type Women Images

Tumor annotated, total 898 1891

Tumor annotated, at diagnosis 896 1761

Tumor annotated, at prior screening 72 139

Location defined, no tumor,
at prior screening

177 335

Annotation measure 25%-tile Median 75%-tile

Area (pixels2), at diagnosis
(n = 1741)

15,780 32,906 72,383

Area (pixels2), at prior screening
(n = 130)

3573 7027 11,773

Major axis (pixels), at diagnosis
(n = 1741)

177 258 396

Major axis (pixels), at prior
screening (n = 130)

83 118 163
Fig. 2 Example of pixel-level annotation of an in situ cancer which is
characterized by multiple calcifications
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Conclusion

For around 500,000 women, we have collected screening as-
sessment data, clinical cancer data, and mammograms of all
10,582 womenwho were diagnosed with breast cancer as well
as a random selection of mammograms of women who
remained healthy. CSAW allows training of deep neural net-
works for diverse applications. An enriched case-control
dataset on a separate computer is available for external re-
searchers providing that applicable rules and regulations are
followed. To gain access, please communicate directly with
the last author of this paper (first name.last name@ki.se).
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